
CROSSTALK The Journal of Defense Software Engineering 7January 1998

The defense software engineer-
ing community is grappling
with the challenge of changing

code in mission-critical applications so
that they will work properly in the next
century. This conversion saga requires
the implementation of thousands of
changes to application areas that have
not been touched for years.

It is laborious and time consuming
to find areas where code must be
changed. Engineers, for instance, must
wrestle with missing source code, wrong
versions, redundant modules, and sloppy
documentation. They also must deal
with the thousands of additional fixes
that have to be implemented throughout
the conversion project. It is a constant
worry that unwanted changes will fall
unnoticed between the cracks.

Yet, while date-change activities are
taking place, software engineers must
conduct day-to-day revisions to the
same applications. Such modifications
may be implemented to remove bugs
and add new features, functionality, or
enhancements to these applications.

The scope of these day-to-day
changes also is substantial; the code of
mission-critical applications is constantly
being modified for various reasons. For
instance, different versions of defense
applications often must be built to ac-
commodate a multitude of simulation
scenarios, e.g., it is much cheaper to test
a missile’s software under various simula-
tion scenarios than to conduct actual
launches for the same purpose.

Software engineers must constantly
modify an application as it goes through
various lifecycle stages. Additional chal-
lenges include updating documentation

while the changes are in progress, mak-
ing changes to firmware, and factoring
hardware changes into the equation.
None of these revisions are trivial given
the complexity of today’s mission-critical
applications. If not properly managed,
these changes may cause the system to
collapse.

Often, the problem is that the con-
version process and the day-to-day appli-
cation changes are treated as separate
projects, and therefore implemented by
multiple teams without effective coordi-
nation. The development environments
in such organizations could face a crisis
of gigantic proportion with the turn of
the new century.

The Y2K conversion project and
day-to-day changes must be conducted
harmoniously, since work may involve
thousands of changes to millions of
lines of code. Otherwise, changes may
be accidentally left out of the end-user’s
version—an unacceptable mistake.
Lives can be lost if, for instance, an
automated combat response system
triggers an attack against a friendly ship
or aircraft. Developers cannot afford to
deliver software that is only mostly the
right version.

The Software Configuration
Management Difference
Fortunately, development organizations
can potentially deliver 100-percent-
right software by placing Y2K conver-
sion and day-to-day development ac-
tivities under the common umbrella of
software configuration management
(SCM), also commonly referred to as
process configuration management.
SCM strictly organizes the tasks and

activities that maintain the integrity of
software product configurations, ensur-
ing configurations are correct, i.e., that
engineers are working on the right
source code and the right versions of an
application.

Many development organizations,
whether they know it, spend 25 percent
or more of their time trying to manage
their configurations. The good news is
that the defense industry is ahead of the
pack for having recognized the need for
automated SCM long before it became
an established concept in the commer-
cial sector. The bad news is that—al-
though the importance of SCM has
been recognized for years and millions of
dollars have been spent on SCM tools—
few software development organizations
do a great job of SCM.

In fact, most average software devel-
opment projects are only able to keep 75
percent to 80 percent correct software
configurations. Many are lucky to main-
tain a 50 percent to 60 percent correct-
ness, and quite a few projects have soft-
ware product configurations less than 50
percent correct [1]. We should not ex-
pect better results for Y2K conversion
projects unless we implement better
controls than the current state of the
practice. Considering the critical need
for Y2K conversions to be precise, there
is an obvious need for most organiza-
tions to become much better at SCM.

Good SCM
Good SCM occurs when the configura-
tions are continually 100 percent cor-
rect—there are no lost or missing
changes, all the correct software compo-
nents and versions are included in the

Software Configuration Management Helps Solve
Year 2000 Change Integration Obstacles

Tom Burton
InRoads Technology

While defense organizations implement year 2000 (Y2K) changes, they continue to implement many day-
to-day changes on these same applications. These two activities are usually undertaken separately, resulting
in the potential for disjointed development efforts and software crises. Successful organizations will need to
manage Y2K conversion and other changes through effective software configuration management.



8 CROSSTALK The Journal of Defense Software Engineering January 1998

builds, and no changes targeted for the
next release somehow end up in the
current release. Good SCM also provides
proof that the configurations are 100
percent correct at any time in the devel-
opment lifecycle.

In sum, good SCM is achieved
when the software product configura-
tions are 100 percent correct and con-
tain all the wanted changes, when the
development organization is 100 per-
cent certain that these applications are
complete, and when the development
team can demonstrate that these appli-
cations are 100 percent correct.

But how does an organization get to
that point? To be effective, the Y2K
conversion project and the day-to-day
development activities must be imple-
mented concurrently and in parallel
under the umbrella of good SCM. This
means that software engineers must take
all the changes from the Y2K projects
and all the changes from the day-to-day
projects and integrate them together, test
them, merge them, and not leave any-
thing behind.

SCM Pitfalls to Avoid
It is difficult to achieve good SCM
without glitches. Three main issues
significantly impact the ability of the
organization to establish SCM.

First, poor SCM often results in
changes being made, but then not put
back into the product configuration.
This happens when programmers forget
that they have made a particular change,
then the developer reinserts the wrong
version of the program. This typically
occurs when the programmer does not
understand or follow the organization’s
established SCM processes.

A second problem can occur when
parallel and concurrent activities are
taking place: one developer’s changes to
a version overwrite another developer’s
revisions to the same version. This is
known as “change regression,” and
though common, this problem is often
overlooked. Such a scenario typically
occurs when there is no automated
process CM tool in place that can track
all changes to the system, allowing
developers to compare their changes
and select the ones they want to keep.

A third SCM problem occurs during
the build process, when source programs
are compiled and linked to create execut-
able programs. Because the build process
is typically automated, wrong versions
can easily be incorporated automatically
into the executable program. This hap-
pens when developers do not know from
where the build is picking the executable
program; therefore, they create and test
incorrect executables. Many additional
SCM issues also come into play during
the build process, all of which impact
the integrity of the software product
configurations.

Implementing Good SCM
Practices
Three critical practices can prevent
these pitfalls and promote good SCM,
helping achieve the goal of 100 percent
correct mission-critical applications to
users.
• The organization must formally

document its development processes
and use these processes as a road
map to effectively integrate the Y2K
projects and the day-to-day changes
to these applications.

• The team must be educated as to
what constitutes good SCM prac-
tices. Training should be viewed as a
process that spans the development
lifecycle. For instance, training can
teach the team the organization’s
processes, help shorten the evalua-
tion of SCM tools, help deploy
SCM tools, and facilitate implemen-
tation. Many outside resources can
help achieve SCM competency.
Some vendors even offer ready-
made SCM classroom materials and
multimedia computer-based
courses, which can effectively be
used for in-house training.

• The development organization
would do well to rely on leading-
edge process configuration manage-
ment tools, which help automate,
distribute, and merge the changes
associated with the Y2K project and
day-to-day development activities.
These client-server solutions provide
facilities to map organizational and
development processes into the tool.

They also provide a complete audit
trail of all development activities so
that the development environment
can guarantee that the applications
delivered to customers are 100 per-
cent complete.

Conclusion
Organizations that treat Y2K conver-
sion projects separately from day-to-day
development activities are likely to
experience significant trouble and set-
backs. To start on a path toward 100-
percent-correct software, these organi-
zations will have to put these two efforts
under the common umbrella of SCM.
Achieving good SCM is possible in this
framework when software processes
guide the overall development effort,
when developers are educated about
effective SCM practices, and when these
efforts are automated via a leading-edge
process CM tool. This will put the soft-
ware development environment on a
more secure path to success. ◆

About the Author
Tom Burton is CEO of
InRoads Technology,
which specializes in
providing tools and
education for the suc-
cessful implementation
of software configura-

tion management. He has more than 10
years experience in software configuration
management.

Voice: 805-967-4545
Fax: 805-964-4790
E-mail: tburton@inroadstech.com
Internet: http://www.inroadstech.com

References
1. “Configuration Management Industry

Outlook,” InRoads Technology, January
1997.

2. “The Year 2000 Digit Crisis Sounds the
Alarm for Active Control of Software via
Process Configuration Management,”
white paper by Tani Haque, CEO of
SQL Software, November 1996,
info@sql.com.

3. “Creating a Culture for Successful Pro-
cess Configuration Management,” white
paper by Tani Haque, CEO of SQL
Software, July 1997, info@sql.com.

Year 2000


